Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(3): e0296352, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38470893

RESUMO

Chest disease refers to a wide range of conditions affecting the lungs, such as COVID-19, lung cancer (LC), consolidation lung (COL), and many more. When diagnosing chest disorders medical professionals may be thrown off by the overlapping symptoms (such as fever, cough, sore throat, etc.). Additionally, researchers and medical professionals make use of chest X-rays (CXR), cough sounds, and computed tomography (CT) scans to diagnose chest disorders. The present study aims to classify the nine different conditions of chest disorders, including COVID-19, LC, COL, atelectasis (ATE), tuberculosis (TB), pneumothorax (PNEUTH), edema (EDE), pneumonia (PNEU). Thus, we suggested four novel convolutional neural network (CNN) models that train distinct image-level representations for nine different chest disease classifications by extracting features from images. Furthermore, the proposed CNN employed several new approaches such as a max-pooling layer, batch normalization layers (BANL), dropout, rank-based average pooling (RBAP), and multiple-way data generation (MWDG). The scalogram method is utilized to transform the sounds of coughing into a visual representation. Before beginning to train the model that has been developed, the SMOTE approach is used to calibrate the CXR and CT scans as well as the cough sound images (CSI) of nine different chest disorders. The CXR, CT scan, and CSI used for training and evaluating the proposed model come from 24 publicly available benchmark chest illness datasets. The classification performance of the proposed model is compared with that of seven baseline models, namely Vgg-19, ResNet-101, ResNet-50, DenseNet-121, EfficientNetB0, DenseNet-201, and Inception-V3, in addition to state-of-the-art (SOTA) classifiers. The effectiveness of the proposed model is further demonstrated by the results of the ablation experiments. The proposed model was successful in achieving an accuracy of 99.01%, making it superior to both the baseline models and the SOTA classifiers. As a result, the proposed approach is capable of offering significant support to radiologists and other medical professionals.


Assuntos
COVID-19 , Aprendizado Profundo , Neoplasias Pulmonares , Humanos , Radiografia , Tosse , Tomografia Computadorizada por Raios X
2.
Sensors (Basel) ; 23(20)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37896548

RESUMO

Skin cancer is considered a dangerous type of cancer with a high global mortality rate. Manual skin cancer diagnosis is a challenging and time-consuming method due to the complexity of the disease. Recently, deep learning and transfer learning have been the most effective methods for diagnosing this deadly cancer. To aid dermatologists and other healthcare professionals in classifying images into melanoma and nonmelanoma cancer and enabling the treatment of patients at an early stage, this systematic literature review (SLR) presents various federated learning (FL) and transfer learning (TL) techniques that have been widely applied. This study explores the FL and TL classifiers by evaluating them in terms of the performance metrics reported in research studies, which include true positive rate (TPR), true negative rate (TNR), area under the curve (AUC), and accuracy (ACC). This study was assembled and systemized by reviewing well-reputed studies published in eminent fora between January 2018 and July 2023. The existing literature was compiled through a systematic search of seven well-reputed databases. A total of 86 articles were included in this SLR. This SLR contains the most recent research on FL and TL algorithms for classifying malignant skin cancer. In addition, a taxonomy is presented that summarizes the many malignant and non-malignant cancer classes. The results of this SLR highlight the limitations and challenges of recent research. Consequently, the future direction of work and opportunities for interested researchers are established that help them in the automated classification of melanoma and nonmelanoma skin cancers.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Estudos Prospectivos , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/patologia , Melanoma/diagnóstico , Pele/patologia , Aprendizado de Máquina
3.
Diagnostics (Basel) ; 13(17)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37685310

RESUMO

Chest disease refers to a variety of lung disorders, including lung cancer (LC), COVID-19, pneumonia (PNEU), tuberculosis (TB), and numerous other respiratory disorders. The symptoms (i.e., fever, cough, sore throat, etc.) of these chest diseases are similar, which might mislead radiologists and health experts when classifying chest diseases. Chest X-rays (CXR), cough sounds, and computed tomography (CT) scans are utilized by researchers and doctors to identify chest diseases such as LC, COVID-19, PNEU, and TB. The objective of the work is to identify nine different types of chest diseases, including COVID-19, edema (EDE), LC, PNEU, pneumothorax (PNEUTH), normal, atelectasis (ATE), and consolidation lung (COL). Therefore, we designed a novel deep learning (DL)-based chest disease detection network (DCDD_Net) that uses a CXR, CT scans, and cough sound images for the identification of nine different types of chest diseases. The scalogram method is used to convert the cough sounds into an image. Before training the proposed DCDD_Net model, the borderline (BL) SMOTE is applied to balance the CXR, CT scans, and cough sound images of nine chest diseases. The proposed DCDD_Net model is trained and evaluated on 20 publicly available benchmark chest disease datasets of CXR, CT scan, and cough sound images. The classification performance of the DCDD_Net is compared with four baseline models, i.e., InceptionResNet-V2, EfficientNet-B0, DenseNet-201, and Xception, as well as state-of-the-art (SOTA) classifiers. The DCDD_Net achieved an accuracy of 96.67%, a precision of 96.82%, a recall of 95.76%, an F1-score of 95.61%, and an area under the curve (AUC) of 99.43%. The results reveal that DCDD_Net outperformed the other four baseline models in terms of many performance evaluation metrics. Thus, the proposed DCDD_Net model can provide significant assistance to radiologists and medical experts. Additionally, the proposed model was also shown to be resilient by statistical evaluations of the datasets using McNemar and ANOVA tests.

4.
Curr Res Neurobiol ; 4: 100092, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37397809

RESUMO

The mechanism that reweights oculomotor vectors based on visual features is unclear. However, the latency of oculomotor visual activations gives insight into their antecedent featural processing. We compared the oculomotor processing time course of grayscale, task-irrelevant static and motion distractors during target selection by continuously measuring a battery of human saccadic behavioral metrics as a function of time after distractor onset. The motion direction was towards or away from the target and the motion speed was fast or slow. We compared static and motion distractors and observed that both distractors elicited curved saccades and shifted endpoints at short latencies (∼25 ms). After 50 ms, saccade trajectory biasing elicited by motion distractors lagged static distractor trajectory biasing by 10 ms. There were no such latency differences between distractor motion directions or motion speeds. This pattern suggests that additional processing of motion stimuli occurred prior to the propagation of visual information into the oculomotor system. We examined the interaction of distractor processing time (DPT) with two additional factors: saccadic reaction time (SRT) and saccadic amplitude. Shorter SRTs were associated with shorter DPT latencies of biased saccade trajectories. Both SRT and saccadic amplitude were associated with the magnitude of saccade trajectory biases.

5.
PLoS One ; 18(4): e0284992, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37099592

RESUMO

Regular monitoring of the number of various fish species in a variety of habitats is essential for marine conservation efforts and marine biology research. To address the shortcomings of existing manual underwater video fish sampling methods, a plethora of computer-based techniques are proposed. However, there is no perfect approach for the automated identification and categorizing of fish species. This is primarily due to the difficulties inherent in capturing underwater videos, such as ambient changes in luminance, fish camouflage, dynamic environments, watercolor, poor resolution, shape variation of moving fish, and tiny differences between certain fish species. This study has proposed a novel Fish Detection Network (FD_Net) for the detection of nine different types of fish species using a camera-captured image that is based on the improved YOLOv7 algorithm by exchanging Darknet53 for MobileNetv3 and depthwise separable convolution for 3 x 3 filter size in the augmented feature extraction network bottleneck attention module (BNAM). The mean average precision (mAP) is 14.29% higher than it was in the initial version of YOLOv7. The network that is utilized in the method for the extraction of features is an improved version of DenseNet-169, and the loss function is an Arcface Loss. Widening the receptive field and improving the capability of feature extraction are achieved by incorporating dilated convolution into the dense block, removing the max-pooling layer from the trunk, and incorporating the BNAM into the dense block of the DenseNet-169 neural network. The results of several experiments comparisons and ablation experiments demonstrate that our proposed FD_Net has a higher detection mAP than YOLOv3, YOLOv3-TL, YOLOv3-BL, YOLOv4, YOLOv5, Faster-RCNN, and the most recent YOLOv7 model, and is more accurate for target fish species detection tasks in complex environments.


Assuntos
Algoritmos , Redes Neurais de Computação , Animais , Peixes , Hibridização in Situ Fluorescente , Biologia Marinha
6.
Cancers (Basel) ; 15(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37046840

RESUMO

Skin cancer is one of the most lethal kinds of human illness. In the present state of the health care system, skin cancer identification is a time-consuming procedure and if it is not diagnosed initially then it can be threatening to human life. To attain a high prospect of complete recovery, early detection of skin cancer is crucial. In the last several years, the application of deep learning (DL) algorithms for the detection of skin cancer has grown in popularity. Based on a DL model, this work intended to build a multi-classification technique for diagnosing skin cancers such as melanoma (MEL), basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and melanocytic nevi (MN). In this paper, we have proposed a novel model, a deep learning-based skin cancer classification network (DSCC_Net) that is based on a convolutional neural network (CNN), and evaluated it on three publicly available benchmark datasets (i.e., ISIC 2020, HAM10000, and DermIS). For the skin cancer diagnosis, the classification performance of the proposed DSCC_Net model is compared with six baseline deep networks, including ResNet-152, Vgg-16, Vgg-19, Inception-V3, EfficientNet-B0, and MobileNet. In addition, we used SMOTE Tomek to handle the minority classes issue that exists in this dataset. The proposed DSCC_Net obtained a 99.43% AUC, along with a 94.17%, accuracy, a recall of 93.76%, a precision of 94.28%, and an F1-score of 93.93% in categorizing the four distinct types of skin cancer diseases. The rates of accuracy for ResNet-152, Vgg-19, MobileNet, Vgg-16, EfficientNet-B0, and Inception-V3 are 89.32%, 91.68%, 92.51%, 91.12%, 89.46% and 91.82%, respectively. The results showed that our proposed DSCC_Net model performs better as compared to baseline models, thus offering significant support to dermatologists and health experts to diagnose skin cancer.

7.
Bioengineering (Basel) ; 10(2)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36829697

RESUMO

Due to the rapid rate of SARS-CoV-2 dissemination, a conversant and effective strategy must be employed to isolate COVID-19. When it comes to determining the identity of COVID-19, one of the most significant obstacles that researchers must overcome is the rapid propagation of the virus, in addition to the dearth of trustworthy testing models. This problem continues to be the most difficult one for clinicians to deal with. The use of AI in image processing has made the formerly insurmountable challenge of finding COVID-19 situations more manageable. In the real world, there is a problem that has to be handled about the difficulties of sharing data between hospitals while still honoring the privacy concerns of the organizations. When training a global deep learning (DL) model, it is crucial to handle fundamental concerns such as user privacy and collaborative model development. For this study, a novel framework is designed that compiles information from five different databases (several hospitals) and edifies a global model using blockchain-based federated learning (FL). The data is validated through the use of blockchain technology (BCT), and FL trains the model on a global scale while maintaining the secrecy of the organizations. The proposed framework is divided into three parts. First, we provide a method of data normalization that can handle the diversity of data collected from five different sources using several computed tomography (CT) scanners. Second, to categorize COVID-19 patients, we ensemble the capsule network (CapsNet) with incremental extreme learning machines (IELMs). Thirdly, we provide a strategy for interactively training a global model using BCT and FL while maintaining anonymity. Extensive tests employing chest CT scans and a comparison of the classification performance of the proposed model to that of five DL algorithms for predicting COVID-19, while protecting the privacy of the data for a variety of users, were undertaken. Our findings indicate improved effectiveness in identifying COVID-19 patients and achieved an accuracy of 98.99%. Thus, our model provides substantial aid to medical practitioners in their diagnosis of COVID-19.

8.
Sensors (Basel) ; 23(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36679541

RESUMO

Coronavirus Disease 2019 (COVID-19) is still a threat to global health and safety, and it is anticipated that deep learning (DL) will be the most effective way of detecting COVID-19 and other chest diseases such as lung cancer (LC), tuberculosis (TB), pneumothorax (PneuTh), and pneumonia (Pneu). However, data sharing across hospitals is hampered by patients' right to privacy, leading to unexpected results from deep neural network (DNN) models. Federated learning (FL) is a game-changing concept since it allows clients to train models together without sharing their source data with anybody else. Few studies, however, focus on improving the model's accuracy and stability, whereas most existing FL-based COVID-19 detection techniques aim to maximize secondary objectives such as latency, energy usage, and privacy. In this work, we design a novel model named decision-making-based federated learning network (DMFL_Net) for medical diagnostic image analysis to distinguish COVID-19 from four distinct chest disorders including LC, TB, PneuTh, and Pneu. The DMFL_Net model that has been suggested gathers data from a variety of hospitals, constructs the model using the DenseNet-169, and produces accurate predictions from information that is kept secure and only released to authorized individuals. Extensive experiments were carried out with chest X-rays (CXR), and the performance of the proposed model was compared with two transfer learning (TL) models, i.e., VGG-19 and VGG-16 in terms of accuracy (ACC), precision (PRE), recall (REC), specificity (SPF), and F1-measure. Additionally, the DMFL_Net model is also compared with the default FL configurations. The proposed DMFL_Net + DenseNet-169 model achieves an accuracy of 98.45% and outperforms other approaches in classifying COVID-19 from four chest diseases and successfully protects the privacy of the data among diverse clients.


Assuntos
COVID-19 , Neoplasias Pulmonares , Humanos , Raios X , COVID-19/diagnóstico por imagem , Radiografia , Tórax/diagnóstico por imagem , Hospitais
9.
Multimed Tools Appl ; 82(9): 13855-13880, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36157356

RESUMO

Coronavirus (COVID-19) has adversely harmed the healthcare system and economy throughout the world. COVID-19 has similar symptoms as other chest disorders such as lung cancer (LC), pneumothorax, tuberculosis (TB), and pneumonia, which might mislead the clinical professionals in detecting a new variant of flu called coronavirus. This motivates us to design a model to classify multi-chest infections. A chest x-ray is the most ubiquitous disease diagnosis process in medical practice. As a result, chest x-ray examinations are the primary diagnostic tool for all of these chest infections. For the sake of saving human lives, paramedics and researchers are working tirelessly to establish a precise and reliable method for diagnosing the disease COVID-19 at an early stage. However, COVID-19's medical diagnosis is exceedingly idiosyncratic and varied. A multi-classification method based on the deep learning (DL) model is developed and tested in this work to automatically classify the COVID-19, LC, pneumothorax, TB, and pneumonia from chest x-ray images. COVID-19 and other chest tract disorders are diagnosed using a convolutional neural network (CNN) model called CDC Net that incorporates residual network thoughts and dilated convolution. For this study, we used this model in conjunction with publically available benchmark data to identify these diseases. For the first time, a single deep learning model has been used to diagnose five different chest ailments. In terms of classification accuracy, recall, precision, and f1-score, we compared the proposed model to three CNN-based pre-trained models, such as Vgg-19, ResNet-50, and inception v3. An AUC of 0.9953 was attained by the CDC Net when it came to identifying various chest diseases (with an accuracy of 99.39%, a recall of 98.13%, and a precision of 99.42%). Moreover, CNN-based pre-trained models Vgg-19, ResNet-50, and inception v3 achieved accuracy in classifying multi-chest diseases are 95.61%, 96.15%, and 95.16%, respectively. Using chest x-rays, the proposed model was found to be highly accurate in diagnosing chest diseases. Based on our testing data set, the proposed model shows significant performance as compared to its competitor methods. Statistical analyses of the datasets using McNemar's, and ANOVA tests also showed the robustness of the proposed model.

10.
PLoS One ; 17(4): e0266462, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35404955

RESUMO

Blockchain technology (BCT) has emerged in the last decade and added a lot of interest in the healthcare sector. The purpose of this systematic literature review (SLR) is to explore the potential paradigm shift in healthcare utilizing BCT. The study is compiled by reviewing research articles published in nine well-reputed venues such as IEEE Xplore, ACM Digital Library, Springs Link, Scopus, Taylor & Francis, Science Direct, PsycINFO, Ovid Medline, and MDPI between January 2016 to August 2021. A total of 1,192 research studies were identified out of which 51 articles were selected based on inclusion criteria for this SLR that presents the modern information on the recent implications and gaps in the use of BCT for enhancing the healthcare procedures. According to the outcomes, BCT is being applied to design the novel and advanced interventions to enrich the current protocol of managing, distributing, and processing clinical records and personal medical information. BCT is enduring the conceptual development in the healthcare domain, where it has summed up the substantial elements through better and enhanced efficiency, technological innovation, access control, data privacy, and security. A framework is developed to address the probable field where future researchers can add considerable value, such as data protection, system architecture, and regulatory compliance. Finally, this SLR concludes that the upcoming research can support the pervasive implementation of BCT to address the critical dilemmas related to health diagnostics, enhancing the patient healthcare process in remote monitoring or emergencies, data integrity, and avoiding fraud.


Assuntos
Blockchain , Segurança Computacional , Atenção à Saúde , Instalações de Saúde , Humanos , Tecnologia
11.
Multimed Syst ; 28(3): 815-829, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35068705

RESUMO

Globally, coronavirus disease (COVID-19) has badly affected the medical system and economy. Sometimes, the deadly COVID-19 has the same symptoms as other chest diseases such as pneumonia and lungs cancer and can mislead the doctors in diagnosing coronavirus. Frontline doctors and researchers are working assiduously in finding the rapid and automatic process for the detection of COVID-19 at the initial stage, to save human lives. However, the clinical diagnosis of COVID-19 is highly subjective and variable. The objective of this study is to implement a multi-classification algorithm based on deep learning (DL) model for identifying the COVID-19, pneumonia, and lung cancer diseases from chest radiographs. In the present study, we have proposed a model with the combination of Vgg-19 and convolutional neural networks (CNN) named BDCNet and applied it on different publically available benchmark databases to diagnose the COVID-19 and other chest tract diseases. To the best of our knowledge, this is the first study to diagnose the three chest diseases in a single deep learning model. We also computed and compared the classification accuracy of our proposed model with four well-known pre-trained models such as ResNet-50, Vgg-16, Vgg-19, and inception v3. Our proposed model achieved an AUC of 0.9833 (with an accuracy of 99.10%, a recall of 98.31%, a precision of 99.9%, and an f1-score of 99.09%) in classifying the different chest diseases. Moreover, CNN-based pre-trained models VGG-16, VGG-19, ResNet-50, and Inception-v3 achieved an accuracy of classifying multi-diseases are 97.35%, 97.14%, 97.15%, and 95.10%, respectively. The results revealed that our proposed model produced a remarkable performance as compared to its competitor approaches, thus providing significant assistance to diagnostic radiographers and health experts.

12.
J Ayub Med Coll Abbottabad ; 27(1): 243-4, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26182789

RESUMO

Renal cysts are the most common space occupying lesions of kidneys. These may be simple or complex. Complex renal cysts are suspicious for malignancy. Computed tomography is the gold standard in diagnosis of complex renal cysts. Negligence resulting in retained surgical foreign bodies does occur in our setup and world over. We present a unique case of retained gauze piece presenting as complex renal cyst, diagnosed four years after pyelolithotomy. A 50 year old male presented with history of on and off right lumbar pain for the last one year, along with low grade intermittent fever and weight loss. Past history revealed that he was operated for renal stones four years ago. Radio imaging including ultrasonography and CT scan revealed complex renal cyst. Patient was explored and found to have thick walled cyst with old gauze in it.


Assuntos
Corpos Estranhos/complicações , Doenças Renais Císticas/etiologia , Rim , Procedimentos Cirúrgicos Urológicos/efeitos adversos , Diagnóstico Diferencial , Seguimentos , Corpos Estranhos/diagnóstico , Humanos , Doenças Renais Císticas/diagnóstico , Masculino , Pessoa de Meia-Idade , Fatores de Tempo , Tomografia Computadorizada por Raios X , Urografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...